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I- Introduc

tion

> Provide government agencies, utilities, and third party decision makers access to detailed information about distributed solar photovoltaic

(PV) arrays.

>Obtain information such as locations, power capacity, and energy production of existing arrays in order to make efficient energy-related

policies.

>Propose a new approach for collecting distributed PV information that relies on computer algorithms to automatically detect PV arrays in

high resolution aerial imagery.
>Investigate a new PV detection algorithm based on a Random Forest (RF)
>Evaluate its detection performance using several different image features.

classifier.

II.Aerial Imagery a

>Dataset contains color (RGB) aerial imagery, collected over the
U.S. city of Fresno, California in 2013, using ortho-rectified aerial
photography, with a spatial resolution of 0.3 meters per pixel.

>The full dataset used in this work encompasses 112.5 km”2 of
surface area, and 2,328 PV array annotations

Grayscale aerial imagery
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Figure 3. An illustration of the texton
feature training procedure. Aerial imagery
is filtered with a bank of filters. In this
work the Leung-Malik (LM) filter bank is
used [30], with 6 orientations, and 2 scales
(36 total filters). The filtered images are
stacked together, where each pixel is
represented by a vector of 36 values,

4 N\ T corresponding to its filter responses. The
non & B " 4 vector of filter responses for each pixel is
then used as input to a K-means clustering
v; E algorithm, which learns K representative,
H or common, filter response vectors, which
l are called textons in this context. In this
Yoy work K was set to 30. The textons are
Kemeans clustering  Jf learned on gray-scale imagery rather than
the original color imagery.
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>Random Forest is a supervised machine learning algorithm. e S el
>The input of our RF detector is a set of features of a pixel in an responses .
Aerial Imagery and the output of the detector is the likelihood of this ——— Histogram of textors
pixel being a PV array. represented by a
>The number of decision trees in our experiment is set to be 30 in histogram of the focal
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our experiment. _ _ _ AL
= = Figure 4 Illustration of the process of extracting texton features for a patch of
I\f. Feature Englneerlng | aeri_al imagery. Each image is_ filtered with the LM filter bank._ Each pix‘el is
assigned to a texton based on its responses to the LM filters. This results in an
> Raw Pixels image where each pixel is represented by its texton assignment. There are
>Color Intensities of the pixels surrounding the pixel we want to thirty textons, so each pixel receives a value between one and thirty. The
p . % ” . feature vector for a given pixel consists of a histogram of the texton
classify. The window size is 7 by 7 in our experiment. \_assignments in a centered 9x9 window. Yy,

>Local Color Statistics:

>Local Color Statistics is relatively computationally inexpensive ‘

V. Experimental Result

method to characterize the color information in an local
neighborhood.
>It computes mean and variance for each channel in windows
surrounding pixels. The windows size in our experience is set to
be 3 by 3.

>Textons:
>Texton features are a popular class of features that are designed
to capture image texture information.
>Textons require a training step to learn a database of textures
and shapes, called a dictionary. The entries in the dictionary are
referred to as textons.
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Figure 2. Tllustration of

>Use all available PV pixels and randomly sample non-PV pixels
for training and testing.

>Evaluate solar panel detection performance using Precision Recall
Curves

>LCS Feature outperforms other features individually.
>LCS+Texton achieves the best result with trade-off of
computational costs.

Local Color Statistics.
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